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Abstract—Aiming at the problem that the downlink channel
estimation performance is limited due to the fast time-varying
and non-stationary characteristics in the high-speed mobile
scenarios, we propose a channel estimation network based
on deep learning, called ChanEstNet. ChanEstNet uses the
convolutional neural network (CNN) to extract channel response
feature vectors and recurrent neural network (RNN) for channel
estimation. We use a large amount of high-speed channel
data to conduct offline training for the learning network,
fully exploit the channel information in the training sample,
make it learn the characteristics of fast time-varying and non-
stationary channels, and better track the features of channels
changing in high-speed environments. The simulation results
show that in the high-speed mobile scenarios, compared with the
traditional methods, the proposed channel estimation method
has low computational complexity and significant performance
improvement.

Index Terms—OFDM, channel estimation, high-speed chan-
nel, deep learning, fast time-varying channel, non-stationary
channel

I. INTRODUCTION

With the rapid development of the high-speed railways,

mobile communication systems in high-speed environments

have become a research hotspot. For orthogonal frequency

division multiplexing (OFDM) systems, downlink channel

estimation has received widespread attention [1]. In high-

speed environments, the wireless channels are influenced

by multipath and Doppler shift, which lead to the time

and frequency selective fading (double-selective fading) and

non-stationary characteristics of channels [2]. The traditional

channel estimation methods are not suitable in this environ-

ments.

Traditional channel estimation methods include frequency-

domain and time-domain channel estimation, which have

different performance and complexity [3]. For the frequency-

domain channel estimation, the channel frequency response

(CFR) at the pilot symbols will be estimated at first and then

the CFR at the data symbols is estimated by interpolation.

The methods of frequency-domain channel estimation are

relative simple and frequently used, such as the least squares

(LS) [4] method, the linear minimum mean square error

(LMMSE) [3] method. This kind of method assumes that

the change of the CFR at pilot symbols and data symbols are

linear, but in high-speed environments, the change of channel

is relatively complex due to the joint influence of multipath

and Doppler shift, which makes the assumption of linear

change not suitable for high-speed channel. Therefore, the es-

timation performance of traditional interpolation methods is

low. For the time-domain channel estimation methods, since

it can directly estimate the channel impulse response (CIR),

the inter-subcarrier interference (ICI) can be eliminated [5].

However, because it needs to estimate the CIR of each path,

the number of parameters to be estimated in time-domain

channel estimation methods will be much more than that in

frequency-domain estimation methods, so it is necessary to

find an effective method to reduce the estimated parameters

of the time-domain channel estimation. For the problem

of too many parameters to be estimated, the traditional

time-domain channel estimation methods generally used the

basis expansion model (BEM) to transform the CIR into

a low-dimensional space formed by the basis vector. This

method can effectively reduce the number of parameters to

be estimated in time-domain channel estimation methods,

such as the BEM-based LS method [6], which can reduce the

estimation parameters by using BEM. However, due to LS

estimation algorithm features lower estimation performance,

it is not suitable for high-speed scenarios. In [7], BEM-based

extended kalman filter (EKF) channel estimation algorithm is

proposed, which can reduce estimation parameters by using

BEM, and the data symbols channel information is obtained

by EKF. Although such method has a certainly estimated

performance improvement compared with traditional meth-

ods, its estimated complexity is too high. Therefore, it is

a challenge to find a high-performance and low-complexity

channel estimation method.

Deep learning (DL), which has been developed in recent

years, has shown strong ability to deal with big data. Many

scholars have applied it to wireless communication systems,

such as millimeter wave (mmWave) channel estimation [8],

channel sate information (CSI) feedback [9], [10], and data

detection [11], [12], in order to achieve excellent perfor-

mance. The DL approach has not been well investigated

for channel estimation, especially for channel estimation in

high mobility environments. Therefore, in order to solve the

weaknesses of the traditional channel estimation methods in

high-speed mobile scenarios, this paper proposes a DL-based

channel estimation network, called ChanEstNet. The main

contributions in this paper are described as follows: Firstly,

an offline training and online prediction channel estima-

tion network with convolutional neural network (CNN) and

bidirectional long short-term memory (BiLSTM) network is

designed; Secondly, for the time-domain channel estimation,

since there are too many parameters to be estimated, the

Maxpooling network is used to reduce dimensions of the

parameters and minimize estimation complexity in this paper;

Finally, we verify the estimated performance and robustness
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of the proposed algorithm with different high mobility envi-

ronments. The simulation results show that the proposed DL-

based algorithm has significant performance improvement

and better robustness compared with the traditional methods.

II. SYSTEM MODEL

For pilot-aided channel estimation methods applicable for

OFDM systems, pilot pattern is the basis for subsequent

research. For the block pilot pattern, the pilot symbols are

inserted into all subcarriers in an OFDM symbol, namely the

pilot symbols are fully inserted into the frequency domain,

so it can effectively overcome frequency-selective fading

[13]. The block pilot pattern has used by some mobile

communication protocols, such as IEEE 802.11p [14], it

indicates that the channel estimation based on the block

pilot mode is applied extensively. We use block pilot channel

estimation in this paper. The block pilot pattern and frame

structure used in this paper is shown in Fig. 1.
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Fig. 1. Frame structure and pilot pattern.

For an OFDM system with N subcarriers and T OFDM

symbols in a sub-frame, the transmitted symbols at tth
OFDM symbol on the nth subcarrier are expressed as

{st(n)}Nn=1, so the system model can be obtained

yt = FHst ⊗Gt + zt (1)

where yt = [yt(1), . . . , yt(N)]T denotes the received se-

quences in time domain, Gt ∈ C
N×L denotes the CIR

matrix at tth OFDM symbol, L denotes the number of

taps. [F]n,k = 1√
N
exp(−j 2π

N kn) is the Fourier transforming

matrix. zt denotes the zero-mean additive complex Gaussian

noise variable with variance is σ2
z . ⊗ denotes the circular

convolution. After removing the cyclic prefix (CP) and by

performing discrete fourier transform (DFT), the received

signal in the frequency domain can be expressed as

ỹt(n) = Ht(n, n)st(n) +
N∑

k=1,k �=n

Ht(n, k)st(k) + z̃t(n) (2)

where ỹt ∈ C
N×1 and z̃t ∈ C

N×1 denote the DFT result

of yt and zt, respectively. Ht ∈ C
N×N denotes the CFR

matrix. The channel estimation aims to make the receiver

estimate the channel matrix Ht through the known ỹt and

st.

III. CHANESTNET CHANNEL ESTIMATION

In this section, the framework of ChanEstNet and the

structure of proposed learning network are briefly introduced

at first. Then, the form of input data and data flow in the

learning network are illustrated in detail. Finally, the model

training of proposed learning network is discussed.

A. The Framework of ChanEstNet

The ChanEstNet network is divided into two phases:

offline training and online prediction, and its framework is

shown in Fig. 2.
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Fig. 2. The channel estimation framework of ChanEstNet.

As shown in Fig. 2, for offline training phase, we train the

learning network by using a large amount of standard high-

speed channel data values which are collected by WINNER

II channel model [15]. For online prediction phase, the input

of the learning network is the feedback of OFDM wireless

communication system. The learning network includes the

one dimension (1D) CNN network, the 1D Maxpooling net-

work, BiLSTM network and fully connected neural network

(FCNN). The structure of learning network is shown in Fig.

3.

The CNN network is mainly used to extract the pilot

sequence feature values, which is composed of a series of

parallel filters. These filters are connected to the input signal

through a set of weights, and the convolution is calculated

along the horizontal direction (time axis). Generally, a CNN

network consists of multiple convolution filters, each filter

processes the data on different channels and calculates the

convolution summation through a sliding window. Set W
as a convolution filter, by sliding the filter on the data to

be convolved, and the convolution output is obtained by

weighting the sum of the data. Therefore, the transformation

formula of CNN is

x′ = f(W ∗ x+ b) (3)

where b is the offset vector, x is convolutional data and

f (·) is the activation function. The factor ∗ denotes the

convolution operation. In this paper, we use double tangent

activation function (tanh), its expression is

tanh(x) =
1− e−2x

1 + e−2x
(4)

The 1D Maxpooling network is mainly used to reduce the

number of parameters to be estimated, and a pooled window

is used to find the maximum value of the filter output. For

the frequency-domain channel estimation, the parameters to

be estimated are less, so this layer can be ignored. For the

time-domain channel estimation, its expression is

x′ = max(x′) (5)

The LSTM network is used to predict the data, which is

a combination of two LSTM networks. One of the LSTM
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Fig. 3. The structure of proposed learning network. In this papar, the FCNN is time distributed neural network, which is independent fully
connected for each time step signal.

networks is used for forward data prediction and another

LSTM network is used for backward prediction. LSTM net-

work has inherent memory cells and can keep the previously

extracted information for a long period for later prediction.

Each LSTM network is composed of several LSTM units.

Each unit is composed of the input gate, forget gate, output

gate and memory unit. The mathematic description of the

LSTM structure is shown as

it = σ(bi +Uixt +Wilt−1) (6)

ft = σ(bf +Ufxt +Wf lt−1) (7)

ct = ft � ct−1 + it � σ(bc +Ucxt +Wclt−1) (8)

ot = σ(bo +Uoxt +Wolt−1) (9)

lt = ot � tanh(ct) (10)

where it, ft, ot, ct and lt are the input gate, forget gate,

output gate, memory unit and hidden layer vector, respec-

tively. Ui, Wi, Uf , Wf , Uc, Wc, Uo and Wo∈ R
d×d

are the weights matrix of LSTM network, bi, bf , bc and

bo∈ R
d are the offsets of LSTM. The weights and offsets

are learned by training, σ is the sigmoid function, � is the

element multiply and d is the input sequence dimension,

which equal the number of OFDM subcarriers in this paper, t
is the number of input sequences, which equal the number of

OFDM symbols, in another word, it is the number of LSTM

units. The update equation and output of LSTM network at

each time step t can be simplified as (11) and (12)

ht = LSTM(ht−1,xt,Θ) (11)

x̂t = tanh(Wl2oht + bl2o) (12)

where LSTM(·) is the combination of (6)-(10), Θ is all

the parameters of the the LSTM network. Wl2o and bl2o

denote hidden-to-output weight and offset. BiLSTM network

is a combination of two LSTM networks, so we can get the

output transformation formula of the BiLSTM network as

pt = Concat(x̂t, x̂
†
t) (13)

where x̂†
t denotes the backward output of BiLSTM at time

step t, pt denotes the output of BiLSTM at time step t.
Concat(·) denotes the function that concatenate two tensors

in a specified dimension. So the output of BiLSTM at each

time step can be expressed as

pt = BiLSTM(lt−1, l
†
t−1, x̂t, x̂

†
t ,Θbi) (14)

where l†t−1 denotes the backward hidden vector of the

BiLSTM network at time step t−1, x̂†
t denotes the backward

input of the BiLSTM network at time step t. Θbi and

BiLSTM(·) denote all the parameter and transformation

function of BiLSTM network, respectively. The output of

BiLSTM network at each time step is transformed by using

FCNN in the last layer of learning network. In contrast

to CNN, each input elements of FCNN are connected to

different weights, and the output is the weighted sum of all

input elements.

B. Data Flow In ChanEstNet

Input data passes through the proposed learning network

that generates the predicted CSI, and the data flow is shown

in Fig. 4.
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Fig. 4. Data flow of the proposed learning network.

Specifically, the original data will be pre-processed at first.

The original CSI data is complex, so we extract the real and

imaginary parts of the original data and then concatenate

them into a dimension, the transformation process is the

orange arrow in Fig. 4. Because LSTM network needs time

sequence as input, the number of the OFDM symbols is taken

as time sequence number. After preprocessing, the data is

used as the input of 1D CNN network and feature vectors

were extracted through CNN. In particular, for time-domain

channel estimation, since the CIR is directly estimated, the

original data has added delay dimension compared to the

frequency-domain channel estimation. Unlike the frequency

domain channel estimation, a 1D Maxpooling layer is used

for compressing the parameters to be estimated. After feature

extraction or parameters dimensional reduction, the data is
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input to the BiLSTM network, and the CSI at the data

symbols is obtained via the BiLSTM network. Finally, the

output dimension of the BiLSTM network is reduced through

the FCNN network. The following part introduces the input

data, extraction of the frequency feature value and channel

estimation in details, respectively.

1) Input data: In this paper, the input data of the learning

network is the CSI matrix in a sub-frame. For frequency-

domain channel estimation, the CSI matrix can be expressed

as H ∈ C
T×N , and for time-domain channel estimation,

the CSI matrix can be expressed as G ∈ C
T×NL. The

CSI at pilot symbols are estimated by LS, and the CSI

at data symbols are set as 0. Therefore, the input of the

learning network can be expressed as H ∈ C
T×NL, L

is 1 for frequency-domain channel estimation. The LSTM

network needs time sequence as input. Therefore, the CSI

is transformed into a form of sequence, its input data is

expressed as

H = [h1, . . . ,ht, . . . ,hT ] (15)

where ht ∈ C
1×NL denotes the CSI at the tth OFDM

symbols. Since the channel data is a complex signal, it

is necessary to pre-process the data before inputted the

proposed learning network. By extracting the real part and

the imaginary part of the input data and concatenate the

real part and the imaginary part, the input data becomes

H′ ∈ R
T×2NL and h′

t ∈ R
1×2NL.

2) Extraction of frequency feature vector: The input data

is pre-processed and sent to the CNN network. The main task

of CNN is to extract and select the frequency feature vector.

In order to extract the feature vector, the CNN network

performs a convolution operation on H′, and the number of

filters is 2NL. Based on (3), the output of the CNN network

is

H′′ = f(W ∗H′ + b) (16)

After data is processed by the CNN network, the output

dimensions do not change, namely H′′ ∈ R
T×2NL. In

particular, for time-domain channel estimation, the output of

the CNN will be reduced by Maxplooing network. Setting

the pooling window size of the Maxpooling network is

1×L, so the data dimension after pooling is H′′ ∈ R
T×2N ,

h′′
t ∈ R

1×2N .

3) Channel estimation: Our proposed learning network

aims to predict the current CSI based on the past and current

feedback and future data. Considering the LSTM network is

excellent in learning of the sequence task, the LSTM network

is used to predict the current CSI in this paper. For forward

prediction, the CSI at the latter moment is predicted by the

CSI at the previous moment. For the backward prediction,

the CSI at the previous moment is predicted by the CSI at

latter moment, the forward and backward pilot information is

fully utilized to further improve the accuracy of the channel

estimation. For channel estimation, each time step of the

BiLSTM network has an output. Based on (14), we can get

the predicted CSI at each time step as

h′′′
t = BiLSTM(lt−1, l

†
t−1,h

′′
t ,h

′′†
t ,Θbi) (17)

The output dimension of the BiLSTM network is twice of

the LSTM network, i.e., h′′′
t ∈ R

4N . Finally, the output of

each time step of the BiLSTM network is dimensionally

transformed through the FCNN, so that the final output

dimension is consistent with the input dimension, that is,

the number of fully connected neurons is 2NL, its transfor-

mation expression is

h′′′′
t = tanh(Wl,th

′′′
t + bl,t) (18)

where Wl,t and bl,t are the weight and offset of the FCNN at

time step t, respectively. The final outputs are then reshaped

into two T × NL tensors as the final estimated real and

imaginary parts, and then add the real and imaginary parts

together to get the final output as

Ĥ = [ĥ1, . . . , ĥt, . . . , ĥT ] (19)

C. Model Training

In order to train the ChanEstNet network, we use the end-

to-end approach to obtain all the weights and biases in the

ChanEstNet network. We set the transformation formula and

all parameters of the ChanEstNet network as fest(·) and Θest,

respectively, and the estimated channel matrix can be denoted

by Ĥ = fest(H,Θest). We use adaptive moment estimation

(ADAM) algorithm to update the set of parameters for the

ChanEstNet network. The ADAM algorithm is different from

the traditional gradient descent algorithm with fixed learning

rate. It can update the learning rate adaptively by training.

The loss function of the network is mean squared error

(MSE), so the predicted loss of our model is

L(Θest) =
1

T

M∑

i=1

(fest(H,Θest)−H∗
i )

2 (20)

where the H∗
i is the supervision message, and M is the

total number of samples in the training set. In this papar,

the WINNER II [15] wireless channel model are used to

simulate fast time-varying and non-stationary channels and

generate training samples. The training, validation, and test-

ing sets have 10000, 2000, and 500 samples, respectively.

The epochs, initial learning rate and batch size are set as

100, 0.01 and 200, respectively.

IV. ANALYSIS ON SIMULATION RESULTS

In this section, we will evaluate the performance of time-

domain channel estimation and frequency-domain channel

estimation of the proposed methods in different environ-

ments. The MATLAB and Python simulation platform are

used for simulation analysis of the proposed methods. The

parameters of simulation system are shown in Table I.

A. Normalized Mean Square Error

The Fig. 5 compares normalized MSE (NMSE) perfor-

mance of the frequency-domain channel estimation LS [4]

method, LMMSE [3] method and the proposed frequency-

domain channel estimation F-ChanEstNet method. The Fig.

6 compares the time-domain channel estimation BEM-based

LS method [6], BEM-based EKF [7] method and the pro-

posed time-domain channel estimation T-ChanEstNet method

in different speed environments.

The simulation results show that the NMSE curve of three

frequency-domain methods are much different. When the
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TABLE I. Parameters of simulation system.

Parameters Values

Frequency of carrier 2.8 GHz

Bandwidth 1.8 MHz

Number of subcarriers 72

Length of FFT 72

Length of CP 9

Modulation QPSK

Number of taps 12

Non-stationary channel WINNER II [15]
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10-1

100

N
M

SE

Frequency-domain estimation

F-ChanEstNet 50km/h
LMMSE 50km/h
LS 50km/h
F-ChanEstNet 300km/h
LMMSE 300km/h
LS 300km/h

Fig. 5. NMSE comparison of frequency-domain channel estimation
methods.

4 7 10 13 16 19

SNR/dB

10-3

10-2

10-1

N
M

SE

Time-domain estimation

T-ChanEstNet 300km/h
BEM-based EKF 300km/h
BEM-based LS 300km/h
T-ChanEstNet 50km/h
BEM-based EKF 50km/h
BEM-based LS 50km/h

Fig. 6. NMSE comparison of time-domain channel estimation
methods.

speed is 50 km/h, the signal-to-noise ratio (SNR) gain of the

LMMSE algorithm is about 16 dB higher than that of LS

algorithm and the SNR gain of the F-ChanEstNet is about 9

dB higher than that of LMMSE algorithm. This is because

the LS algorithm is simpler than LMMSE algorithm, the

estimation error is higher due to ignore the effects of noise,

and the LMMSE can improve estimation precision by using

the channel statistics information. At a speed of 300 km/h, the

NMSE of the three methods is on an upward trend compared

with 50 km/h, and the SNR gain of LMMSE method to LS

method is 5 dB averagely. At this time, the difference of SNR

gain between F-ChanEstNet and LMMSE is significant, the

main reason is that the hypothesis of linear interpolation that

the change of CIR is linear is not applicable for high speed

channel. The proposed method first learns the characteristics

of channel variation through training, and then estimates the

response at the data symbols through nonlinear mapping, so it

is more suitable for high-speed scenario and is also excellent

in a low-speed environments.
For time-domain estimation, the NMSE performance of

various methods is very close at different speeds. Since the

time-domain estimation estimates the channel gain for each

path, the ICI caused by the Doppler shift can be estimated.

From Fig. 6 , we can see that the SNR gain of BEM-based

EKF algorithm is about 3.5 dB higher than that of BEM-

based LS algorithm and the SNR gain of T-ChanEstNet is 4

dB higher than that of BEM-based LS, the main reason is

that the CIR linear change theory is not suitable for high-

speed channel. Although the BEM-based EKF methods are

similar to T-ChanEstNet at this time, the estimation time is

too long due to higher complexity. Therefore, the proposed

method can also have higher performance in time-domain

estimation.
In a word, the ChanEstNet channel estimation method

shows higher NMSE performance both in time-domain esti-

mation and frequency-domain estimation. For the low-speed

environments, the SNR gain of the proposed method will

gradually reduce with the increase of SNR. For a high-speed

environments, the proposed method features excellent NMSE

performance.

B. Bit Error Rate
The bit error rate (BER) performance is the macro index

to measure the influence of the channel estimation method

on the whole system performance. The Fig. 7 and Fig. 8

compare the BER performance of different algorithms at

speeds of 50 km/h and 300 km/h.
For the frequency-domain channel estimation, it can be

seen from Fig. 7 that at 50 km/h, the LMMSE algorithm has

about 4.5 dB SNR gain to the LS algorithm, the BER perfor-

mance of F-ChanEstNet algorithm and LMMSE algorithm is

equivalent at a low SNR (SNR≤10dB) and F-ChanEstNet

algorithm has about 6 dB SNR gain compared with LS

algorithm. However, in the case of high SNR (SNR>10dB),

the BER of F-ChanEstNet method decreases rapidly and its

BER performance is significantly superior to that of LMMSE

algorithm. At 300 km/h, the LMMSE algorithm has an SNR

gain of about 4 dB to the LS algorithm. Similarly, at a

low SNR, The F-ChanEstNet method has the same BER

performance as the LMMSE algorithm, and has an SNR gain

about 5 dB to LS. In the case of high SNR, the F-ChanEstNet

method has about 4 dB SNR gain to LMMSE algorithm.
For the time-domain estimation, as shown in Fig. 8, the

BER performance of T-ChanEstNet is equivalent to that of

BEM-based EKF method at 50 km/h, its BER performance

is significantly superior to that of BEM-based LS method,

because the CIR change tends to be stationary in a low-

speed environments and BEM-based EKF algorithms is also
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Fig. 7. BER comparison of frequency-domain channel methods.
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Fig. 8. BER comparison of time-domain channel estimation meth-
ods.

suitable well. Since the the LS estimation algorithm is too

simple, the BER performance is not better. At 300 km/h, the

BER performance of different channel estimation methods

will tend to converge with the growth of SNR, due to the

influence of the channel environment. The SNR gain of

BEM-based EKF is about 6.5 dB to BEM-based LS, at this

time, the SNR gain of the T-ChanEstNet algorithm is about 2

dB compared with BEM-based EKF algorithm and its SNR

gain reaches about 9.5 dB to BEM-based LS algorithm.

Overall, the BER performance of the proposed method is

superior to that of other algorithms both in the frequency-

domain estimation and time-domain estimation at a high-

speed scenarios, which reflects the overall performance that

is more adaptive to high-speed scenarios.

V. CONCLUSIONS

In the paper, for the weakness of the traditional channel

methods in a high-speed scenarios, a channel estimation

method based on deep learning is proposed. The nonlinear

mapping characteristics of deep learning can better adapt to

the changing characteristics of high-speed channels, and the

channel information in the offline training sample can be

effectively used to improve the accuracy of channel esti-

mation. Finally the performance of the ChanEstNet method

is analyzed in a high-speed scenarios through simulation

comparison of the time-domain estimation and frequency-

domain estimation. The simulation results show that in the

case of low estimation complexity, the channel estimateion

precision and whole system performance of the ChanEstNet

method is both superior to that of the traditional methods.
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